WEI DONG

5000 Forbes Avenue, Newall-Simon Hall 2205, Pittsburgh, PA 15213 E-mail: weidong@andrew.cmu.edu Website: http://dongwei.info

EDUCATION

Carnegie Mellon University, Pittsburgh, PA, USA

Aug. 2018 - Jun. 2023 (Expected)

PhD in Robotics, Robotics Institute, School of Computer Science

Peking University, Beijing, China

Sept. 2015 - Jul. 2018

Master of Science, Key Laboratory of Machine Perception, School of EECS

Peking University, Beijing, China

Sept. 2011 - Jul. 2015

Bachelor of Science, School of EECS

RESEARCH INTEREST

I work on 3D perception, from point cloud registration to dense geometry reconstruction. It is always interesting to play with the models scanned and reconstructed from the real-world. My research topics include:

- Supervised and self-supervised 3D geometric registration
- · Classical/differentiable geometry and appearance representation and reconstruction;
- Fast, modern, and easy-to-use online/offline reconstruction systems with fully optimized GPU backends.

SELECTED PUBLICATIONS

[1] Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids Wei Dong, Chris Choy, Charles Loop, Yuke Zhu, Or Litany, and Anima Anandkumar *To appear in CVPR* 2023

[2] **ASH: A Modern Framework for Parallel Spatial Hashing in 3D Perception Wei Dong**, Yixing Lao, Michael Kaess, and Vladlen Koltun

PAMI, May 2023

[3] Self-supervised Geometric Perception

Heng Yang*, **Wei Dong***, Luca Carlone, and Vladlen Koltun *CVPR* 2021 (*oral*)

[4] Deep Global Registration

Chris Choy*, **Wei Dong***, and Vladlen Koltun *CVPR 2020 (oral)*

[5] GPU Accelerated Robust Scene Reconstruction

Wei Dong, Jaesik Park, Yi Yang, and Michael Kaess *IROS 2019 (oral)*

[6] Joint Multi-view Texture Super-resolution and Intrinsic Decomposition

Vagia Tsiminaki, **Wei Dong**, Martin R. Oswald, and Marc Pollefeys *BMVC* 2019 (*spotlight*)

RESEARCH EXPERIENCE

Robot Perception Labs, CMU advised by Michael Kaess

August 2018 - present

^{*} indicates equal contribution

• Worked on efficient, robust, and reproducible GPU accelerated reconstruction systems

AI Algorithm Group, NVIDIA

advised by Anima Anandkumar

May 2022 - present

· Worked on fast monocular indoor scene reconstruction

Intelligent Systems Labs, Intel

May 2019 - August 2021

advised by Vladlen Koltun

- Worked on supervised and self-supervised deep global point cloud registration
- One of the key contributors to the open source project Open3D

Computer Vision and Geometry Group, ETH Zurich

July 2017 - December 2017

coadvised by Vagia Tsiminaki, Martin Oswald, and Marc Pollefeys

Worked on joint appearance reconstruction and texture super resolution

OTHER PUBLICATIONS

[1] Learned Depth Estimation of 3D Imaging Radar for Indoor Mapping

Ruoyang Xu, **Wei Dong**, Arkash Sharma, and Michael Kaess *IROS* 2022

[2] A vision-based sensing framework for adaptive robotic tooling of indefinite surfaces

Özgüç Bertuğ Capunaman, **Wei Dong**, and Benay Gürsoy Construction Robotics 2022

[3] Map Compressibility Assessment for LiDAR Registration

Ming-Fang Chang, **Wei Dong**, Joshua Mangelson, Michael Kaess, and Simon Lucey *IROS* 2021

[4] Compositional Scalable Object SLAM

Akash Sharma, **Wei Dong**, Michael Kaess *ICRA* 2021

[5] Surfel-Based Dense RGB-D Reconstruction With Global And Local Consistency

Yi Yang, **Wei Dong**, Michael Kaess *ICRA* 2019

[6] Continuous-Time Stereo Visual Odometry Based on Dynamics Model

Xin Wang, Fei Xue, Zike Yan, **Wei Dong**, Qiuyuan Wang, Hongbin Zha *ICRA 2019*

[7] Guided Feature Selection for Deep Visual Odometry

Fei Xue, Qiuyuan Wang, Xin Wang, **Wei Dong**, Junqiu Wang, Hongbin Zha *ACCV 2018*

[8] PSDF Fusion: Probabilistic Signed Distance Function for On-the-fly 3D Data Fusion and Scene

Reconstruction

Wei Dong, Qiuyuan Wang, Xin Wang, and Hongbin Zha *ECCV 2018*

[9] An Efficient Volumetric Mesh Representation for Real-time Scene Reconstruction using Spatial Hashing

Wei Dong, Jieqi Shi, Weijie Tang, Xin Wang, and Hongbin Zha *ICRA 2018*

[10] Edge Enhanced Direct Visual Odometry

Xin Wang, **Wei Dong**, Mingcai Zhou, Renju Li, and Hongbin Zha *BMVC 2016*

SKILLS

Computer LanguagesC/C++, Python, MATLABSoftware & ToolsCUDA, OpenGL, LATEX

Language Chinese (native), English (fluent), Japanese and Korean (basic)

SERVICE

Reviewer of ICRA, IROS, RA-L, TRO, CVPR, ECCV, TVCG, IJCV