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Abstract

We aim to recover a high resolution texture representation of objects observed from
multiple view points under varying lighting conditions. For many applications the light-
ing conditions need to be changed and thus require a texture decomposition into shading
and albedo components. Both texture super-resolution and intrinsic texture decomposi-
tion have been separately studied in the literature. Yet, no method has investigated how
these methods can be combined. We propose a framework for joint texture map super-
resolution and intrinsic decomposition. To this end, we define shading and albedo maps
of the 3D object as the intrinsic properties of its texture and introduce an image forma-
tion model to describe the physics of the image generation. Our approach accounts for
surface geometry and camera calibation errors and is also applicable to spatio-temporal
sequences. Our method achieves state-of-the-art results on a variety of datasets.

1 Introduction

Image-based 3D reconstruction has been a long time research focus in computer vision. Im-
pressive advances have been made such that state-of-the-art methods are now able to recover
fine geometric details with similar or even better accuracy than expensive laser scanners.
While these methods cleverly use the information redundancy of a multi-view setup to re-
cover high-frequency geometric details, there are few methods which do so for computing
highly-detailed texture maps. With the increasing demand of 3D content for television, gam-
ing, augmented and virtual reality applications as well as for industrial software, recovering
high-resolution texture details is of equal importance. For instance, in tasks like surface or
material quality inspection or in medical applications such technology in combination with
commodity cameras has the potential to replace expensive task-specific sensor technology.
In this paper, we focus on recovering high resolution texture maps by solving the inverse
problem of the physical generative imaging process. Since captured 3D models are often
used with different lighting conditions than the ones at capturing time, it is essential to be
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Figure 1: Overview of our method. We compute super-resolved texture maps while jointly
decomposing the texture into albedo and shading components.

able to remove scene dependent light conditions from the high quality texture. Therefore, we
propose a method that simultaneously decomposes shading and albedo while super-resolving
the texture map. See Fig. 1 for an overview. In sum, we make the following contributions:
1) We present the first method for joint texture super-resolution and intrinsic decomposition
in a 3D multi-view setting. We show that the joint estimation of both entities gives superior
results than their independent estimation and demonstrate possible applications.

2) We further extend our method to the spatio-temporal case for which we show that the
quality and temporal consistency of texture and albedo maps can be further improved by
additionally considering further images from neighboring time steps.

2 Related Work

Since we combine super-resolution texture mapping with intrinsic decomposition in a multi-
view setting, we exploit results from multiple subfields of computer vision which have been
well studied in separate scenarios. This section outlines the most important related works.

2D Intrinsic Decomposition. There have been a plethora of studies performing intrinsic
decomposition to retrieve shading and albedo from images. An overview and benchmark
can be found in [15]. The vast majority of intrinsic decomposition methods impose priors in
the log-domain [3, 5, 11, 15, 19, 21, 41, 42], emphasizing pairwise smoothness in the color
space. Bell et al. [5] integrated multiple prevalent 2D priors and could handle most scenes,
but lack the ability to deal with hard shadows. For the intrinsic decomposition of videos,
temporal consistency is stressed. Weiss [41] dealt with time variant lighting assuming an
albedo constancy. Kong et al. [19] processed videos enforcing temporal albedo consistency
and shading similarity. Later, a real-time pipeline was built by Meka et al. [29] utilizing non-
local spatial-temporal constancy. Yet these methods stick to 2D priors without exploring the
underlying geometry that defines the shading, hence the problem is ill-posed to some extent.
3D Intrinsic Decomposition. Intrinsic decomposition in a 3D setting from multiple images
has been studied in combination with classical image input [30, 31], but also in combination
with RGB-D input [3, 18, 21]. In contrast to many 2D intrinsic decomposition methods,
several 3D intrinsic decomposition define priors in the color domain rather than in the log-
color domain and approximate the lighting model with spherical harmonics [26, 28, 31, 44].
In [26] ideas from shape-from-shading approaches are used for the 3D reconstruction of non-
rigid monocular image sequences with human faces. Zollhofer ef al. [44] additionally refine
the 3D model which is computed from a series of RGB-D images. A recent extension of
this method [28] introduces spatially varying spherical harmonics for improved refinement
results. Both [28, 44] intrinsically decompose only the chromacity channel rather than RGB.
Multi-view Texture Mapping. The simplest way for creating a texture map on an object
surface from a set of photographs is to blend the weighted color values of the input [8].This,
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however, leads to over-smoothed textures. Therefore, many works introduce additional reg-
istration in order to reduce the amount of ghosting artifacts [6, 9, 22, 23, 36, 37, 40]. The
most generic way to correct for both geometric inaccuracies and camera calibration erros is
an optical flow alignment step for registering the down-projected input images, e.g. as done
in [9, 40]. Mostly these methods merge or select input appearance information with some
kind of weigthed averaging scheme and thus limiting the output texture resolution to the one
of the input images. In sum, they do not fully exploit the multi-view viewpoint redundancy
to generate textures which exceed the resolution of the input images.

2D Image & Video Super-resolution. Although barely studied in the multi-view texture-
mapping case, single image and video super-resolution has been studied in many works.
Many early methods rely on a generative image formation model with blurring, warping,
down-sampling and solve the corresponding inverse problem [2], follow a Bayesian ap-
proach [10, 25], or use variational approaches [32]. Tung et al. [39] considered a multi-
view setting, yet their approach targeted on super-resolving all input videos rather than the
model’s texture map. Recently, machine learning-based methods have lead to significant
performance improvements, e.g. with residual or generative adversarial networks [20, 35]
or regression networks [1]. Impressive results with super-resolved human face images have
recently been achieved by Saito et al. [34]. Although it is great to see how far machine learn-
ing approaches can push the state-of-art, this deep network is heavily overfit to human faces
and the method is not generic to arbitrary textures. Further, these methods may hallucinate
details, generating undesirable outputs. In this paper, we only use the physics of the image
formation model and solve for the inverse problem.

Multi-view Texture Super-resolution. In a series of works

]
Goldliicke et al. provided the first approach to compute super- %‘% z
resolved texture maps on arbitrary manifolds [13] which then g -
was extended to also jointly refine the geometry [14] and cam- Fi ?; E Z
era calibration [12]. Improved super-resolution results have been  nethod Y
achieved by Tsiminaki et al. [38] in which they additionally per- 7.0, ar (1] v v
form optical flow optimization to account for inevitable surface Kongeral.[19] v v
o Mekaeral. [29] v v
geometry as well as camera calibration errors. We follow the  \fi el o al. [32] v v
ideas of this approach and generalize it for joint intrinsic texture  Eisemann et al. [9] v
L. . Wiichter et al. [40] v
map decomposition. In [27] high-res textures are computed from  \ioou rar 31] v v
a sequence of RGB-D images in an online setting, but without Maier et al. [27] v v
fullv 1 . . dund 16 Ived Zollhofer et al. [44] v v
ully leveraging view redundancy. [16] compute super-resolved  \piererar 28] v v
geometry, but no textures or intrinsic decomposition. Tab. | sum-  Goldlicke eral. [12] v v/
. . Tsiminaki er al. [38] v vV
marizes the propterties of the most related works. In sum, no gy A

existing method fully exploits multi-view redundancy to gener-
ate high-res texture maps and to decompose them into high-res
albedo maps that are invariant to light conditions.

Table 1: Overview of
related methods.

3 Problem Formulation

Problem Setting. Our goal is to compute high-resolution, intrinsically decomposed texture
maps for an arbitrary scene model from given input images. We consider an n-view multi-
camera setup with given projection matrices {P;}? |, P;: R?® — R? and input color images
{L}",, with I;: Q; C R? — R3. For a given scene model, provided as a mesh M, we
aim to compute a super-resolved texture map T and a corresponding decomposition into
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Figure 2: Our image formation model and notations. We use the super-resolved texture
map T=AS from albedo A and shading S to generate images similar to input I;.

an albedo map A and shading map S, such that T(x) = A(x) - S(x) in every point x. In
our setting, the texture, albedo and shading map will also be represented by 2D images,
T,A: T C R* » R? and S: T — R which store an unwrapped version of M as a texture
atlas which has potentially been cut into separate texture maps. We also consider input videos
and temporally changing, dynamically deforming meshes, but for simplicity of notation we
first discuss the static case and extend our model for the dynamic case later on.

Image Formation Model and Super-resolution. In order to exploit the view redundancy
of a multi-camera setup, we target a texture map resolution which is significantly higher
than the input image resolution. Intuitively, we are observing a continuous mesh surface that
is sampled with a low resolution frequency by each of the input cameras. In practice, the
camera chip integrates all incoming light within the area of a pixel to a single value, which
we model mathematically with a Gaussian blurring kernel K combined with a downsampling
operator D. Thus, a low-res image I'R can be obtained from a high-res image I''R via blurring
and downsampling, I'R = DKIMR, In multi-view texture mapping, we also need to model
the projective mapping P; between the texture atlas space and every input image i. Similar
to [38, 40], we also consider geometric inaccuracies and camera calibration noise with an
optical flow alignment step, represented with an per-image warping operator W; : R? —
R2. In sum, in the ideal case a low-res input image I; can be computed from the high-res
texture atlas as a concatenation of perspective projection, optical flow warping, blurring and
downsampling: [; = DKW;P; - T. For texture super-resolution we aim to fulfill this equation
for all input views. An overview of our image formation model is depicted in Fig. 2.
Intrinsic Decomposition. As mentioned before, we express the appearance T of the object
as a point-wise multiplication of the albedo map A and shading map S. The albedo map is
the intrinsic color of the surface that is independent of lighting conditions while the shading
map depends on the surface orientation and the local illumination conditions. Under the
assumption of a Lambertian reflectance model we approximate the shading map S using
spherical harmonics (SH) basis functions [33] that depend on the local surface orientation. In
particular, we use a second-order spherical harmonics lighting model with nine coefficients
S = 22:1 Hy(n)l;, where H(n) are the spherical harmonics basis functions taken from [44]
parameterized by the local surface orientation n, and 1 = (1,1, ...,lo) are the corresponding
spherical harmonics coefficients. This parametrization of the shading incorporates geometric
information into the lighting model and simplifies the intrinsic decomposition problem.

4 Joint Intrinsic Decomposition and Super-resolution

Using the image formation model , we aim to solve the inverse problem while accounting
for noise in the input images, calibration and surface geometry. Thus, we propose an energy
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minimization model that effectively accounts for missing data and inaccuracies.

Energy Formulation. Since the image formation model in Fig. 2 can never be perfectly
fulfilled, we minimize the residual in form of the back-projection error. To assure a well-
posed energy, we assume piece-wise smooth warping functions and albedo map. The super-
resolved, decomposed texture map can then be computed as the minimizer of the following
energy E(A,S, W) that depends on albedo, shading and optical flow warping:

n
minimize Z/ [||DKW,-PiAs—1i||§+AA||VA\|2+)LWHVWI-\|2} dx. 1)
i=17T

3

The weights Aa, Aw € R>q account for the expected noise level for albedo and warping.

4.1 Optimization

To locally minimize the non-convex energy in Eq. (1) we alternate the optimization of the op-
tical flow warp, albedo and shading independently while keeping the other entities mutually
fixed. The individual energy minimizations are described in the following.

Albedo estimation. The albedo map can be estimated by computing the global minimum
of Eq. (2) with the Fast Iterative Shrinkage and Thresholding Algorithm (FISTA) [4]. We
denote the first quadratic term by fgaa (A) and the second term by fry (A), and compute the
minimizer iteratively by updating Eq. (3) until convergence:

n
A*:argminZ/ [IDKWP;AS — 13 + 24 |VA]2 | dx, @)
A =1/T
AR = prox,,;. (Ak YV faaa(AF )) . 3)

The gradient of the data term is V fya (A) = 2N] (N;A* —1;) with N; = DKW,P; diag(S) and
is weighted by gradient descent step size y. The proximal operator performs a generalized
projection: prox,(x) = argmin, {5 [[x —y||*+¥G(x) }.

Shading estimation. For the estimation of the shading parameters 1, Eq. (1) simplifies to

3 n -1
I = argmm Z/ |IDKW;P;AS(I) — ;|3 dx = Z ZM‘TM‘ (Z ZM?TI,‘-) . @
c=1i=1 =1i=1

Finding the best SH coefficients 1* is straightforward. In the discretized setting, we can
rewrite all symbols in Eq. (4) with matrices and vectors that cover the entire domain T
as I = argmin, Y2_, Y| [M¢1—1¢|* with M¢ = DKW,P; diag(A°)H and ¢ being the color
channel. In practice we solve this problem iteratively with a standard Matlab solver.
Optical flow warp estimation. We estimate a vector field W; for each view i € {1,...,n}:

Wi :argmin/ [||DKWiPl~AS — 1|3 4 Aw|| VWil 2 | dx. 3)
w; JT

We use the coarse-to-fine scheme in [25] to compute the flow field. A local minimum of
Eq. (5) is obtained via iterated re-weighted least squares (IRLS). In sum, the computation of
intrinsic decomposition and joint super-resolution is performed by iterating Egs. (2)-(5).
Initialization. We initialize the albedo by utilizing the off-the-shelf intrinsic decomposition
system [5] that performs well on images in the wild. The texture, treated as a regular image,
can be decomposed into initial albedo and shading textures provided an active area mask.



6 TSIMINAKI, ET AL: JOINT MULTI-VIEW TEXTURE SUPER-RES & INTRINSIC DECOMP.

4.2 Spatio-temporal Setting

Our approach is easily extended to process multi-view videos and an arbitrarly deforming
mesh. To exploit appearance information from several time steps, we assume constant albedo
within a temporal window of neighboring frames. In our experiments we found a window
size of 3 to provide the best trade-off between additional accuracy and processing time. The
energy for the spatio-temporal case is then defined on frames around the current time step 7.

T+1 n
E(AS,W,0)= Y Z/T{HD’K'W@P@AS’—I§||j+7LA||VA||2+/IW,||VW§H2] dx. (6)

t=1—1i=1

The optimization is analogous to the one in Eq. (1).

S Experiments

Setup. We carried out all experiments using a MATLAB implementation on a 2.20GHz
Intel Xeon E52660 CPU with 256 GB RAM. We initialize the algorithm by first computing
a weighted average texture map of visible inputs and use the code of [5] to compute the initial
albedo and derive the initial shading. We threshold the relative norm of the energy to stop the
optimization (usually 10-60 iterations). The execution time is in the range of 15-40 minutes
per iteration depending on the dataset size, i.e. number of views and image resolution. Note
that much better performance can be achieved by parallelizing the optimization on a GPU.

Lighting Type Method ‘ MSE SSIM

Proposed | 0.016342 0.853446
Sequential | 0.016319 0.859915
Proposed | 0.100509 0.751124
Sequential | 0.106267 0.670265
Proposed | 0.023330 0.848372
Sequential | 0.029368 0.608505
Proposed |0.019509 0.854575
Sequential | 0.019613 0.863193
Proposed |0.106619 0.731606
Sequential | 0.109467 0.668565
Proposed | 0.032784 0.832347
Sequential | 0.037840 0.570647
Proposed |0.030629 0.829590
Sequential | 0.029568 0.850900
Proposed | 0.107606 0.722176
Sequential | 0.109863 0.684500
Shading Proposed | 0.042381 0.815609

Figure 3: Experiments with varying lighting con-  Left+Above Sequential | 0.053433 0.533307
ditions. We have placed a single directional light Table 2: Comparison to sequential
in front of the object, left of the object, or two di- approach: Super-resolution by [38]
rectional lights on the left and above the object. It followed by 2D intrinsic decompo-
can be observed in the mostly similar albedo results sition [5]. The table shows MSE
that our method is robust to changing lighting con- and SSIM scores evaluated on the
ditions. The recovered shading maps are similar to ground truth texture atlases. Our
the ground truth indicating that the light direction is method consistently yields more ac-
correctly estimated. curate albedo and shading maps.

Ground truth Our Results Texture

Albedo  Shading  Texture  Albed Shading
- VT ! -

Texture

Albedo

Shading

Texture

Albedo

Shading

Texture

Albedo
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5.1 Joint Decomposition on Synthetic Data

We evaluate the performance of our model under varying lighting conditions on the synthetic
ToAD dataset [24]. We introduce 3 scenes with different lighting scenarios: one light source
on the left of the object (Left), one on the front (Front) and two light sources on the left and
above the object (Left+Above). In each case, we use the ground truth geometry and albedo
from [24] and the synthetic shading to render the model from 56 viewpoints (512 x 512).
We use up-sampling factor X2, i.e. we reconstruct albedo, shading and texture with an atlas
resolution of 1024 x 1024 and compare with the ground truth, as shown in Fig. 3.

Our method yields results close to the ground truth in every case. By changing the
light positions and by increasing their number the extraction of the shading becomes more
challenging. Our model is able to deal with such variations of lighting conditions.

We further compare to the naive sequential approach consisting of super-resolving the
texture with [38] followed by 2D intrinsic decomposition [5]. In Table 2 we report the MSE
and SSIM scores computed in the texture domain with respect to the reconstructed texture,
albedo and shading maps. We see that our method consistently outperforms the sequential
method. Note that our goal are superior results with our joint intrinsic decomposition over the
sequential method rather than outperforming [38] since the texture optimization is similar.

5.2 Joint Decomposition on Real Data

We run experiments on 6 publicly available real-world datasets. The first 3 datasets BUNNY,
BEETHOVEN and BIRD used in [12] are captured in a controlled capturing studio, while
FOUNTAIN [43] and RELIEF [44] datasets are from less controlled environments. BUNNY,
BEETHOVEN and BIRD consist of 19, 33 and 36 calibrated images with 1024 x 768 pixels,
and FOUNTAIN and RELIEF consist of 55 and 40 key frames with 1024 x 1280 pixels.

We compare to the method of Wichter [40], the state-of-the-art multi-view texture super-
resolution techniques by Goldliicke et al. [12] and Tsiminaki ef al. [38] on BEETHOVEN,
BUNNY and BIRD. We use a texture atlas resolution of 2x the input image resolution and
use identical 3D models as input. Our method achieves comparable results to [38], as shown
in Fig. 4. To quantify differences, we take the output of [38] as reference texture and compute

Model Input Wichter [40]  Goldlicke [12]  Tsiminaki [38] Ours

BUNNY

Image Domain Texture Domain
Accuracy MSE SSIM MSE SSIM

BEETHOVEN

a— BUNNY 0.000056 0.997700  0.000201 0.963691

- . BEETHOVEN 0.000042 0.994283  0.000110 0.987816

\ i BIRD 0.000037 0.997763  0.000141 0.979812

- Table 3: Distance to the method of
Tsiminaki et al. [38]. Mean value of

the MSE (lower is better) and SSIM

(higher is better) are computed be-

tween the rendered images (image

Figure 4: Qualitative comparison with state-of- domain) and between the texture at-
the-art texturing methods. While our method addi- lases (texture domain). The higher
tionally computes a texture decomposition, the com- the SSIM and the lower the MSE, the
bined results are comparable to [38]. closer the our output is to [38].




8 TSIMINAKI, ET AL: JOINT MULTI-VIEW TEXTURE SUPER-RES & INTRINSIC DECOMP.

Albedo Shading Texture Albedo Shading

== = | = o }“" S—

Figure 5: Output of our method on FOUNTAIN and RELIEF datasets. The albedo con-
tains the color information, the shading reflects the normals of the mesh and the reconstructed
texture entails high frequency details.

the error between the reconstructed texture of our method as well as the error between the
reprojected images. Tab. 3 shows that our method achieves comparable results to [38].

We use the same upscaling factors for the FOUNTAIN [43] and RELIEF [44] datasets.
Due to the ¢, data term in Eq. (1), our method averages out the non-lambertian properties
and reconstructs an intrinsic albedo map that is invariant to illumination changes as well as
a shading map, as shown in Fig. 5. We compare our method to Kinect fusion [17], Zoll-
hofer et al. [44], Maier et al. [28] and Wichter et al. [40]. A fair comparison of the intrinsic
decomposition is not possible since the methods of Zollhofer et al. [44] and Maier et al.
[28] perform intrinsic decomposition only on the chromacity and not on the full RGB infor-
mation. We thus focus on the reconstruction of the texture and compare the re-projections.
Figures 6 and 7 show close ups of one selected re-projected image as well as the difference
maps with the corresponding mean value of the mean square error. Our method is able to
exploit the visual redundancy and recovers high-frequency details.

Extension to the Temporal Domain. We evaluate the applicability of our method on
the temporal domain and demonstrate the advantage of the joint optimization. We run ex-
periments on a selected time window of size 3 of the Running sequence of TOMAS [7] by
downscaling the 64 images to 512 x 512. We compare our proposed joint optimization to

Input image

)

Kinect fusion [17] Zollhofer et al. [44]  Maier et al. [28

©

Wiichter et al. [40] Ours

Close-ups Overview

Diff. to Input

MSE=0.012450 ~ MSE=0013211  MSE=0.009605  MSE=0.013660  MSE=0.008053
Figure 6: Qualitative results on the Fountain dataset [43]. The RGB-D methods [17, 44]
blur the texture due to low voxel resolution and camera misalignments, while [28] generates
good results via camera pose and geometry optimization. [40] often introduces artifacts and
seams misalignments. We recover high frequency details and remove apparent specularity.
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Input Re-rendered images using
Image [38] [38]+[5] Our Albedo

KF [17] _ Zollhtfer [44] Maier [28] Wiichter [40] _ Ours

(@ (b © (d
Figure 8: Relighting Example. (a)
Selected input view of TOAD in the
: -~ original scene. From left to right ren-

MSE-0.003143  MSE-0.00389 MSE=0.001540 MsE-oo0s016 Mse-o00is39 derings in the new scene using (b)
Figure 7: Qualitative results on the Relief super-resolved texture of [38] (c) out-
dataset [44]. Our method successfully denoises and put of sequential approach [38]+[5] (d)
recovers fine details of the texture. Similar to Fig. 6, output of our method. Our method re-
we also show difference maps and view-averaged moves shading effects at capture time
MSE values for each method. and re-rendering looks more realistic.

Input Sequential Approach [38]+[5] Our Spatio-Temporal Approach (for 3 frames)
Mesh Image Texture Shading Albedo Shading+Texture Joint Albedo

Figure 9: Sequential vs. Spatio-temporal approach. The sequential approach 1nc0rrect1y
introduces high frequency details of the albedo in the shading map like the logo on the T-
Shirt. Our joint optimization successfully decomposes the shading from the albedo.

the naive sequential approach similarly to Sec. 5.1. By introducing additional time frames,
the lighting conditions change and the shading decomposition becomes more challenging.
The sequential approach cannot distinguish the high-frequency details of the albedo and it
incorrectly introduces them into the shading map. Our method effectively deals with these
variations and correctly extracts the shading maps at each frame, as shown in Fig. 9.

5.3 Applications, Limitations and Future Work

Applications.  An interesting application of our method is object relighting. We quali-
tatively evaluate our method on object relighting using the TOAD dataset where the light
source was placed left of the object and compare it to the naive approach of using the super-
resolved texture of [38] and the sequential approach presented in Sec. 5.1. To relight the
object we create a new scene with new directional light sources above the object and on the
front left side. Our method successfully removes from the initial shading effects and the new
renderings integrate realistically the new shading, as shown in Fig. 8.

Limitations and Future Work. The image formation model derivation contains a several
common assumptions that open up directions for future work. Firstly, our data term favors
Lambertian lighting and deviations like specularities are averaged out in our solution. Fur-
ther, the spherical harmonic light model assumes a distant monochromatic light source and
thus spatially varying lighting, cast shadows or light occlusions cannot be captured by our



10 TSIMINAKI, ET AL: JOINT MULTI-VIEW TEXTURE SUPER-RES & INTRINSIC DECOMP.

model. Moreover, the shading decomposition is currently governed by the surface normals of
the given model and missing high-frequency model details cannot be captured by the shading
model. The simultaneous optimization of the surface geometry could tackle this issue.

6 Conclusion

We presented a novel texture super-resolution approach which jointly decomposes the high-
resolution texture into shading and albedo components. Our approach builds on well es-
tablished state-of-the-art generative super-resolution models and generalizes them for joint
intrinsic decomposition. Our method exploits knowledge about the 3D model to guide the in-
trinsic decomposition with surface normal information. In turn, we do not need strong priors
for the decomposition and obtain superior results compared to 2D decomposition techniques.
In addition to experiments on real and synthetic data of static scenes we showed the applica-
bility of our method to spatio-temporal multi-view sequences. Future work will focus on the
concurrent refinement of the surface geometry and normal information.
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