
An Efficient Volumetric Mesh Representation
for Real-time Scene Reconstruction using Spatial Hashing

Wei Dong, Jieqi Shi, Weijie Tang, Xin Wang, and Hongbin Zha

Abstract— Mesh plays an indispensable role in dense real-
time reconstruction essential in robotics. Efforts have been
made to maintain flexible data structures for 3D data fusion,
yet an efficient incremental framework specifically designed
for online mesh storage and manipulation is missing. We
propose a novel framework to compactly generate, update,
and refine mesh for scene reconstruction upon a volumetric
representation. Maintaining a spatial-hashed field of cubes, we
distribute vertices with continuous value on discrete edges that
support O(1) vertex accessing and forbid memory redundancy.
By introducing Hamming distance in mesh refinement, we
further improve the mesh quality regarding the triangle type
consistency with a low cost. Lock-based and lock-free opera-
tions were applied to avoid thread conflicts in GPU parallel
computation. Experiments demonstrate that the mesh memory
consumption is significantly reduced while the running speed
is kept in the online reconstruction process.

I. INTRODUCTION

Due to the appearance of light-weight, consumer level

depth sensors such as Kinect and Structure Sensor, on-

the-fly dense reconstruction of ordinary scenes has become

a popular topic. In the field of robotics, real-time dense

geometric acquisition enables informative environment per-

ception and serves as a valuable cue for localization and

navigation. Besides, dense 3D models portrait scenes and

produce insightful visualizations.

When we refer to 3D reconstruction, it is inevitable to

consider the geometric representation. In the context of real-

time reconstruction using consumer level sensors, the data

structures that are robust to noise and suitable for data fusion

are preferred. Therefore volumetric scalar fields (e.g. signed

distance field) have gained their reputation for the ability

to easily integrate noisy data at various viewpoints; point-

based methods are also appreciated for their elegance in math

using filtering techniques. Mesh, as a widely-used classical

3D representation, however, is not paid much attention to

for its loose organization of vertex arrays and their indices

interpreted as triangles.

Although in many cases not as suitable as other methods

for real-time data fusion, mesh owns various advantages.

Composed by triangles, it is highly efficient for rendering,

acting as the default structure on most graphics hardwares

and industrial softwares. Besides, it is a reasonable simplifi-

cation and sampling of the continuous 3D surfaces that can
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Fig. 1: Top, final reconstructed mesh of scene burghers
(cube resolution 8mm) rendered with Phong shading. Bottom,

visualization of the duration of each vertex maintained in

memory; the warmer the color, the longer the duration,

indicating a stronger temporal consistency.

provide control points especially useful for deformation es-

timation, essential in real-time dynamic reconstruction [20].

Topology is reserved viewing the connectivity of vertices,

hence 3D segmentation over mesh is also desirable to provide

high-level understanding of the scene during data fusion [19].

In view of this, mesh is extracted in many incremental

reconstruction frameworks where it is indispensable. These

implementations are, however, usually either functionally

separated as utilities [5], [14], [19], [20], or adopting loose

mesh storage strategies, not fully taking the advantage of

compact spatial representations [7], [8]. This would impair

the neatness of a reconstruction pipeline, possibly cutting off

relations between mesh and latent data; duplicate vertices are

prone to be allocated, losing the mutual connections between

triangles. Besides, an additional data structure such as KD-

Tree or octree is required if spatial vertex querying is needed,

which is not uncommon in neighbor searching and model
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resampling.

In this paper we design an incremental mesh generation

framework based on volumetric data structure using spatial

hashing [6], [8]. Our major contributions include:

• A compact data structure that embeds the vertices in

the volumetric grids. We utilize the one-to-one corre-

spondences between voxel edges and mesh vertices,

eliminating vertex redundancies.

• A parallel mesh generation pipeline with online mesh

extraction, update, and garbage collection, linking the

mature volumetric data fusion techniques [3] and the

mesh extraction functions available on volumes [1].

• A simple yet effective mesh topology refinement al-

gorithm. We reveal the deficiency in the mesh created

by prevalent real-time volumetric scene reconstruction

systems, and improve the triangle shape consistency by

local shape regularization.

II. RELATED WORK

3D data representation for online fusion. Real-time

dense 3D reconstruction of ordinary scenes requires data

fusion, which is aimed at integrating data acquired at differ-

ent viewpoints with possible overlaps, and reducing noise.

To meet such demand, many representations have been

proposed. A fairly popular strategy is to divide the world

volumetrically, and analyze per-voxel local geometric infor-

mation. Curless and Levoy [2] introduce the signed distance

function (SDF) to describe the Euclidean distance from each

voxel center to its closest surface. Newcombe et al. [3] adopt

a truncated version of signed distance function (TSDF) and

implement a real-time application on GPU which incre-

mentally fuses depth data captured by a Kinect. Since it

manages the spatial volume with a 3D plain array, its working

space is limited due to memory constraints. Zeng et al. [4]

utilize an octree to replace the plain array, reducing the

memory consumption to some extent. Similarly, Steinbrücker

et al. [7] propose an octree-based structure that is able to

run in real-time on a CPU. Whelan et al. [5], [11] instead

maintain a moving volume of active area, and generate mesh

when a region is streamed out. Nießner et al. [6] use a 2-

level cascade voxel hashing strategy to manage voxels that is

highly efficient for GPU. The method is extended to CPU by

Klingensmith et al. [8], and is further optimized by Kähler

et al. [13]. Other than volumetric approaches, there are also

point-based [10] and surfel-based [12] methods to perform

data integration. Marton et al. [16] demonstrate an adaptive

mesh generation method by directly re-sampling over point

clouds, but the underlying KD-tree is not efficient enough

to support real-time processing. Zienkiewicz et al. [17] fuse

data into mesh with non-local optimizations; presented as a

2.5D height map, occlusions can hardly be handled.

Real-time rendering. Regarding the underneath represen-

tation of 3D data type, i.e. , volume, point cloud, and mesh,

several approaches have been raised to reveal the underlying

3D surfaces so as to render and visualize. Rendering mesh is

trivial, as the modern graphics pipelines are mostly designed

for triangles. For volumetric data, there are mainly two
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Fig. 2: System pipeline.

options available: generate mesh at the isosurfaces from the

volumetric field with methods such as Marching Cubes (MC)

[1] and fall back to the regular triangle rendering [7], [8], or

directly trace each ray from the pixels of a virtual camera

to find the intrinsic physical properties, i.e. , the surfaces

laying on the zero-crossing set [3], [6], [13], which is in

theory the same as surface determination in MC. Point-based

rendering has also been proposed for dense visualization

of point clouds [9], usually based on splatting. Due to the

architecture of modern graphics hardwares, the techniques

other than mesh rendering are relatively more expensive and

less compatible, therefore a conversion into mesh is preferred

in various systems.

Mesh generation from volumes. The cornerstone of mesh

generation from volumetric data is laid by Lorensen and

Cline [1] with MC. This simple algorithm that can run in

parallel has been widely used up to now with various refine-

ments [25], [28]. However, it is generally suitable for static

data. In the real-time reconstruction systems, MC is usually

implemented in its original form with minor adaptations to

the data structure of the volumetric scalar field. Steinbrücker

et al. [7] manage the 3D space with an octree and store mesh

in each node with 8×8×8 voxels, where complicated border

situations are decided and a recursive search through the tree

is processed. Klingensmith et al. [8] follow [6] and divide

the space into spatial-hashed bricks, each holding a batch of

voxels (e.g. , 8×8×8). Only bricks in the sensor’s viewing

frustum will be operated for mesh generation, where a vector

of mesh triangles are loosely maintained per brick. These

triangles are not connected even with shared vertices; the

incremental meshing for each frame can be described as an

entire new mesh generation in local areas, where no temporal

continuity is reserved.

III. SYSTEM OVERVIEW

Our system extends the prevalent volumetric dense re-

construction pipeline in [6], [8], illustrated in Fig.2. The

system is fed by a stream of depth images acquired by a

hand-held sensor such as Kinect, along with the sensor’s

poses assumed known. In our work, the poses come from

ground truth; RGB-D version of ORB-SLAM2 [18] can also

be utilized as a black box for pose estimation. At each

timestamp, the depth image is fused into the maintained

volumetric cube field by changing TSDF distributions at the

corner of each cube, to be discussed in §IV; afterwards,

a local mesh generation or update is performed based on
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Fig. 3: 2 level spatial management. Space is first coarsely

divided into blocks around surfaces, managed by a hash

table. Blocks are then further split into an array of cubes.

Each cube holds 1 corner, 3 edges, and up to 5 triangles,

which are allocated on the memory heap. Visualized in 2D

for simplicity.

MC [1], possibly accompanied by local refinements; finally

mesh is reformatted for traditional triangle rendering instead

of ray-casting. Our algorithms are specifically designed for

parallel running on a GPU, but can be easily moved to

CPU. In the following sections, the stages of the pipeline

will be discussed one-by-one, except for mesh refinement

and rendering. The former requires a detailed observation,

therefore is separated, while the latter is too trivial to be

discussed.

Fig.3 shows a 2-level cascade structure to manage spatial

information following [6]. At first, it splits the space into

large blocks as the basic unit for spatial hashing; each block

is further divided into many (e.g. 8× 8× 8) small cubes to

hold local geometric information. This strategy constraints

the size of hash table and therefore avoids hash collision

to some extent, meanwhile guarantees the resolution of

geometric information.

In [7], [8], [13] scalar geometric values, i.e. TSDF, are

stored at the fine-scale voxel level, while triangles are

coarsely managed in the block level in hierarchy. Instead,

we carefully maintain a cube structure to hold both triangles

with their vertices and TSDF values, shown in Fig.4; all the

mesh manipulations are performed at the fine scale.

IV. VOLUMETRIC TRIANGLE REPRESENTATION

Terms are first introduced in this section. The space is split

into blocks allocated only around object surfaces. A block is

further divided into cubes, typically owning 8 corners and

12 edges; considering the overlap, however, only 1 corner

and 3 edges need to be stored in average.

As illustrated in Fig.4, we align each cube to the xyz
axises, maintain the corner at c = (x0, y0, z0), and preserve

the edges ex = (l, 0, 0), ey = (0, l, 0), and ez = (0, 0, l) that

start from c, where l is the cube’s side length. TSDF d(c)
is incrementally updated on c for data fusion, and vertices

vx, vy, vz intersected on axises, if existing, are stored on the

correspondent edges with limited local degree of freedom

Cube

TSDF: at corner

Vertex: on edges 
in this cube

Vertex: on edges 
in the adjacent cube

c
vx

vy

vz

ex

ey

ez

Fig. 4: Cube level data structure. Only 1 corner and 3 edges

are maintained per cube, while others can be accessed at

adjacent cubes.

ensured by MC. This binds the continuous vertex position

to a discrete edge coordinate, making it possible for vertices

to be directly accessed in O(1) with a hash table visiting

plus a local indexing; vertex sharing between adjacent cubes

becomes especially simple via edge indexing. A cube also

holds up to 5 triangles that connect the vertices on edges,

which might come from a nearby cube; cube type in MC is

recorded as a supplement to indicate the number and shape

of triangles, both previously and currently, to be discussed

in §V-B.

In terms of memory efficiency, edges and triangles in a

cube are stored in pointer arrays of the size 3 and 5, while the

pointed data are managed on the memory heap. This can be

further optimized by saving only 1 pointer each for edges and

triangles, where pointer arrays are also dynamically managed

on the memory heap. A vertex stores position and normal,

and reserves the space for color. In addition, we introduce

a reference count to determine whether recycle is needed,

referring to §V-E. A triangle holds 3 pointers to index its

vertices.

V. MESH GENERATION, UPDATE, AND REFINEMENT

A. Block Collection and Data Fusion

When a depth image Di : R
2 → R along with a sensor

pose (from sensor to world) w
s Ti = [ws Ri | w

s ti] ∈ SE(3)
is received at the timestamp i, we first find each valid pixel

p ∈ Ωi ⊂ R
2, where Ωi is the set of valid pixels in Di, and

form a ray:

r = w
s ti + λw

s RiDi(p)K
−1p̃, (1)

where p̃ is the 3D homogeneous coordinate, K is the intrinsic

matrix of the sensor, λ is the length parameter along the ray,

and Di(p) reads the depth value at p. In a certain range

around the scanned point along r, i.e. λ ∈ [1 − δ, 1 + δ] ,

blocks are collected and will be allocated if not already done.

Therefore only the blocks affected by new observations will

be processed.

After collection, every corner of cubes c ∈ R
3 inside the

gathered blocks are projected to the depth image to find the

approximately closest scanned point, and truncated distance

is computed accordingly:

d̃i(c) = φ(Di(K
w
s T

−1
i c)− (ws T

−1
i c).z), (2)

where φ(·) is the truncation function and (ws T
−1
i c).z is the

depth of c in the camera coordinate system; d̃i(c) is then
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Fig. 5: The grouping of cubes. Cubes at opposite poles are

gathered with no overlapping edge hence no corresponding

vertex.

integrated into stored d(c), details discussed in [3]. TSDF

value inside the sensor’s viewing frustum around surfaces

will be updated, being the basis of mesh generation.

B. Cube Type Determination

MC [1] is utilized in the generation of mesh in the

following sections. In MC, a table T : {0, 1}8 → {0, 1}12
is precomputed to indicate the triangle distributions, i.e. the

number of triangles and on which edges do their vertices lie.

Each bit of t denotes whether the scalar value at the related

corner (in our case, d(c)) is below an isovalue (in our case,

0); each bit of T (t) indicates the existence of a vertex on the

corresponding edge, 3 in the current cube and 9 in adjacent

cubes. In most situations, the access of scalar value at corners

is as trivial as visiting an adjacent value in a plain array.

There exists border cases that the neighbor cube providing

shared corner is not in the same block, where an additional

O(1) spatial hash table lookup is required. The current cube

type ti is computed and stored along with the previous cube

type ti−1 to provide a cue for temporal consistency.

C. Vertex Initialization and Update

Having determined T (t), linear interpolation of endpoints’

positions of an edge whose indicator bit is 1 will be com-

puted in order to decide the position of the vertex it binds.

The assignment is lazy: vertices are initialized only when

first used; otherwise an update is sufficient.

The most elaborate part of this method different from the

original version lies in vertex sharing in the neighbor cubes.

In a serial implementation, e.g. loop based CPU version, this

is trivial once we choose the correct loop order. This is

however, absolutely non-trivial when the program runs on

a GPU where thousands of stream-processors are working

simultaneously and vertices are determined in parallel. If no

care is taken of, memory leak will be severe, causing 2 to 3

times of additional memory consumption; unexpected results

may also take place. We attempt two solutions to guarantee

the correctness of sharing:

Lock-free version. A typical method to avoid conflict

between threads is to utilize the reduction method with a

divide-and-conquer strategy [27]. In its original form to sum

up an array of numbers, the array is divided into two non-

overlapping parts and summed up in each part; the process

is iteratively operated until the array is not separable.

ref count: 1

ref count: 0

add update

ref count: 2 ref count: 2

ref count: 1

remove

remove

ref count: 0

recycle

create

Fig. 6: Change of a vertex’s reference count according to

triangle insertion and deletion. Recycling will be triggered

when a vertex is not referenced anymore.

Inspired by this manipulation, we divide the 3D array of

cubes inside a block into several groups in which no overlap

exists. Illustrated in Fig.5, we divide a 2 × 2 × 2 cube into

4 parts, which can also be extended to a wider region. As

no edges are shared, this process is lock-free and can run in

parallel.

Lock-based version. Lock is another traditional solution

for resource sharing. A pure mutex-based operation will be

inappropriate, however, as thousands of threads querying

mutexes will easily lead to severe deterioration of perfor-

mance. Instead, we adopt an atomic operation under such

circumstances. In this implementation, only the first thread

who atomically acquires a vertex will have the privilege to

allocate and assign it. Since the interpolation ratio of an

edge’s endpoints are already determined in the data fusion

stage, the correctness of the vertex’s position will hold for

the other threads.

D. Triangulation

Up to this stage, we have determined the vertices of

triangles to be processed. To reduce the cost of triangle

allocation and assignment, we compare ti and ti−1: if they

coincide, common in the incremental process, the list of

triangles and their vertices will remain unchanged inside the

cube, keeping a temporal consistency; otherwise the previous

triangles will be cleared and new ones will be created.

E. Garbage Collection

The shared vertices are referenced by and only by tri-

angles. In order to manage memory correctly, we use the

reference counting technique. When a new triangle is created,

the reference count of its related vertices will be increased

by 1; when a destroying operation takes place, a symmetry

decrease operation will be processed, as Fig.6 illustrates. The

vertices with a 0 reference count will be regarded as garbage

and recycled, waiting for a new allocation.

Aside from a recycling indicator, the reference count can

also be regarded as the degree of a vertex in topology, which

might serve as a useful property in mesh analysis.

F. Mesh Refinement

A problem of mesh extracted from volumetric fields during

online data fusion can be found in the illustrated figures in
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Fig. 7: Illustration of ‘cracks’. (a), Top, a general look into

the copyroom scene where a printer is placed in front of

a wall. Color of mesh represents the confidence of TSDF

values around vertices, green accounts for more unsteadiness.

Note the irregular green triangles appear in pattern. Left
bottom, a closer view of a specific block, where TSDF values

at corners are also visualized in color. The warmer the color,

the more positive the value; green is approximately 0. Right
bottom, upper view of the block with mesh. Triangles whose

vertices are around zero-value TSDF corners are prone to

be irregular. (b), abruptly changed triangles in dotted lines
emerge due to disturbance of TSDF value at one corner.

literature [7], [8], and also appears in our system. It is an

interesting phenomenon depicted in Fig.7a, where irregular

triangles appear in an observable pattern. After a careful

analysis, we find it is the limited resolution and the principle

of MC that leads to the deficiency. In most cases, a real world

plane will go through the middle of a cube, see Fig.8; the

corners of the cube at two sides separated by the plane will

hold TSDFs who are dominated by a series of d̃i(c) (see

§V-A) of the same sign. In such a case, the cube type t
can be determined with confidence, producing two triangles

that is neat enough to represent the crossing plane of a cube.

However, when a plane in the world coordinate system is not

strictly parallel to the axises of cubes, it is highly possible

to intersect cubes at corners, as illustrated in Fig.7. In such

cases, positive and negative d̃i(c) are distributed evenly at c;
a small disturbance would lead to the flip of sign of d(c),
hence the bit-array t will be directly affected, resulting in

an abrupt change of the output T (t) and its correspondent

triangle distribution shown in Fig.7b. This event would repeat

itself along the plane every time such an intersection occurs.

Attene et al. [26] provided a comprehensive review of

available mesh repair techniques in the application perspec-

tive, yet a satisfying on-the-fly solution does not appear

regarding online mesh generation. Dzitsuik et al. [24] have

came up with the idea of fitting planes to increase the

smoothness in an incremental fashion. This method runs

efficiently when the scene is smooth with many planes, but
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Fig. 8: Regular and most frequently created triangle shapes

in ordinary scenes. The order of 8-bits is presented in the

first cube.

might face performance problems in a complex environment

with a high resolution according to our experiments. In the

context, we introduce an simple yet effective local method

to reformat the triangle shapes.

Intuitively, in the disturbed cube in Fig.7b, if we extend the

affected triangle edges, they would approximately intersect

outside the cube (may not exactly intersect, but fairly close

given a small TSDF’s absolute value), forming a large trian-

gle bounded by the solid lines. Assuming a smooth transition

of TSDF in the local area, the extrapolated vertex would

coincide with the vertex held by its correspondent neighbor.

Therefore geometrically it is reasonable to eliminate the

small fragments and maintain one large triangle instead. A

tricky implementation is adopted to achieve the target: we

simply set the type of the disturbed cube to the undisturbed

type and run MC. The interpolation in MC would, with the

same equation, serve as extrapolation given the same sign of

TSDF of two adjacent corners.

The following operation detects the disturbance: given the

8-bit vector ti−1 and ti denoting the previous and currently

estimated cube type, if

dH(ti, ti−1) ≤ 3, (3)

dH(ti, trj) ≤ 3, ∃j ∈ {1 · · · 6}, (4)

|d(ck)| < ε, ∀k | ti,k ⊕ trj,k = 1, (5)

are satisfied, where dH denotes the Hamming distance,

ti,k is the kth bit of ti, d(ck) reads the TSDF value

at the kth corner, ⊕ is the xor sign, ε is a pre-

set threshold proportional to cube size, and tr1...6 =
{11001100, 00110011, 10011001, 01100110, 11110000,
00001111} hold the ‘regular cube’ types shown in Fig.8,

then we assume it is the disturbances at the kth corners in

Eq.5 that flip the sign, leading to irregularity. Under such

circumstances, ti = trj is applied before MC.

This approach is robust: Hamming distance between each

pair of regular type vector trj ∈ tr{1···6} is either 4 (per-

pendicular) or 8 (parallel with all sign reversed), therefore

choosing 3 as a discriminating value in Eq.3-5, the triangles

will adhere to the closest regular type in Fig.8; the sign

reversion will also be strongly limited by the temporal

constraint ti−1 and the tolerant threshold ε.
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Fig. 9: Experiment results of an incremental reconstruction

on office2 sequence with a 3cm cube resolution. (a), running

time comparison between lock-based and lock-free. (b), mesh

memory consumption.

VI. EXPERIMENTS

We test our method on various RGB-D datasets, includ-

ing ICL-NUIM [21], TUM [22], and datasets provided by

Zhou and Koltun [23], where depth images with registered

poses are all provided. The experiments are conducted on a

laptop with an Intel Core i7-6700HQ CPU, and an Nvidia

GTX 1070M graphics card. We take advantage of the core

components including GPU hash table and data fusion from

the open-source code provided by [6], and implement the

meshing pipeline entirely. The code is written in C++, with

CUDA 8.0 for parallel computation and OpenGL 3.3 for

rendering. In CUDA, each block is assigned to a stream

processor, and each cube is manipulated by a thread. In

all configurations, a block contains 8 × 8 × 8 cubes. The

generated mesh is directly compressed and copied in GPU

memory from the CUDA context to OpenGL for real-time

feedback. Cube resolutions vary from 8mm (typically used

for fine-grained scene reconstruction) to 3cm (usually set for

global mapping in SLAM tasks).

Our pipeline is compared against [8] as the baseline, for

which we also implemented a GPU version. For simplicity,

all the mesh is stored in a global array instead of arrays

allocated per block in [8]. Without loss of fairness, we

generate mesh only for blocks in viewing frustum to test

running speed, and for all blocks to test memory usage.

A. Lock-based and Lock-free Comparison

In §V-C we have discussed two possible solutions for

parallel vertex sharing. To determine which approach to

adopt, we evaluate both and draw the conclusion that the

lock-free implementation, although theoretically achievable,

is not preferable to the lock-based version.

Fig.9a illustrates the result of running time for meshing

stage of two methods. The time of lock-free is 2 to 3 times of

the lock-based version; it seems that the avoidance of thread

conflicts cannot compensate for the expenses of group-

level serial launches. This trend also holds for higher cube

resolutions. In view of this, we choose the lock-based version

in following experiments. The idea of grouping cubes in lock-
free might be utilized in a multi-threaded CPU version where

the order of loop is critical.
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Fig. 10: Comparison of our method and baseline. (a), mesh

memory consumption. (b), average running time. Both ex-

periments are conducted on the office2 dataset with a series

of resolution configurations.

B. Memory and Running Time Results

Memory. Experiments are first conducted to show re-

duction of mesh memory consumption. The number of

triangles should be in theory identical for both the proposed

method and the baseline; in experiments, there is a difference

(generally ≤ 5%) due to thread conflicts in hash table entry

allocation [6], and is ignored in figures for simplicity. We

focus on vertex count, representing the geometry of scenes.

Fig.9b shows a typical trend of mesh accumulation during

the sequential online reconstruction. The growth of vertex

count is significantly constrained in our method, compared

to baseline. Fig.10a illustrates the number of vertices with

different resolution selections. When the precision is fairly

high, the gain will be considerable. In Table I we list the

memory consumption for several datasets.

It is reasonable that vertices are even fewer than triangles.

Consider a mesh that looks like the regular part in Fig.7:

when we take an area of w × h, the number of triangles

will be 2wh, while the number of vertices will be (w +
1)(h + 1), hence in the infinite case the triangles will be

limw,h→∞ 2wh/[(w + 1)(h+ 1)] = 2 times of the vertices.

Therefore, any vertex count that is greater than half of

triangle count will be valid.

At current, although a reduction of vertex count is appar-

ent, the memory cost in total (at 8mm cube resolution, 50000

blocks, 1.8M vertices, and 3.5M triangles, which is enough

for all our test scenes) is in fact increased to about 1.6GB,

since the data structure of a cube is not fully optimized,

storing 56 bytes per unit. If it were minimized to 24 bytes

using the techniques discussed in §IV, the total memory

including the cubes and mesh they hold will be reduced to

around 700MB, approximately the same as the memory of a

TSDF field plus the non-optimized mesh [8]. With a similar

total memory cost, our method reduces 3D model size, holds

much more geometric information such as connectivity, and

supports O(1) vertex accessing.

Time. While introducing additional computations, we

manage to maintain the running speed of meshing stages

6328



(a)

(b)

Fig. 11: Incrementally reconstructed mesh. (a), household
with cube resolution 3cm and max scanning range 2.5m.

(b), lounge with cube resolution 8mm and max scanning

range 1.6m (20 frames with heavy motion blur were man-

ually filtered out). Each 3 rows from top to down: global

mesh; visualized duration of vertices, where a warmer color

indicates a longer sustained time; locally updated mesh

in viewing frustums, where red bounding boxes represent

blocks and blue pyramids denote frustums (enhanced for

easier recognition). Best viewed in color and enlarged.

(refinement included) in general. For relatively low cube

resolution, e.g. 3cm, the running time is slightly faster than

the baseline, as shown in Fig.10b and Table I. It turns out

that our method becomes slower than baseline in the very

dense case, e.g. 8mm. This might be improved by dealing

border cubes per block specifically, where many redundant

hash queries are processed. In spite of this, our data structure

serves as a trade-off between efficient mesh accessing and

management, and fast mesh generation.

C. Qualitative Results

Since the mesh generated by our method is in theory

identical to the baseline method in geometric appearance,

we do not focus on comparing mesh quality with baseline.

(a)

(b)

Fig. 12: Mesh before (left) and after (right) refinement. (a),
simulated office1 dataset. (b), real world copyroom dataset.

Besides areas zoomed in, similar refinements appear in the

entire scene. The images are slightly degenerated due to

compression.

Instead, we conduct experiments in two aspects, incremental

reconstruction and refinement.

Incremental reconstruction. We process two sequences

and render the global mesh against the newly modified mesh

in sensor’s frustum per frame. In addition, we visualize

the existing duration of vertices, see Fig.11. In household
(Fig.11a) where sensor is generally far from the scene

objects and motion blurs appear frequently, we accept a

large scanning range and a coarse cube resolution to fuse in

more valid data. When a loop closure emerges, most previous

vertices are preserved, as shown in the color map. In lounge
(Fig.11b) where sensor are close to the objects and depth

images are carefully captured, we run the program with a

small scanning range and a high resolution. Most blocks are

ignored during mesh generation, saving a large amount of

time, while the mesh representing the whole scene remains

consistent.

Refinement. Results with and without mesh refinement

stage are compared both in the simulated dataset office2
(Fig.12a) with perfect sensor poses and depth images and the

real-world dataset copyroom (Fig.12b). The irregular ‘cracks’

in the scenes are significantly reduced, leading to consistent

triangle shapes and smooth planes. In the incremental recon-

struction, the type of triangles sometimes suffer instability

due to frequently flipped TSDF signs around, which could

be further ameliorated by emphasizing temporal constraints.

VII. CONCLUSIONS AND FUTURE WORK

We propose a novel mesh representation with spatial

hashed cube units that supports memory-efficient vertex

sharing and time-efficient O(1) accessing. Equipped with

parallel algorithms, the data structure achieves considerable

performance in the task of real-time scene reconstruction;

additional refinement further improves the quality of mesh.
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Dataset Frames
Time (ms) Memory (vertex count)

Ours Baseline
Ours Baseline

Meshing All Meshing All

ICL/lv1 965 6.06 7.20 (8.35) 6.55 7.48 85634 450903
ICL/lv2 880 6.89 7.85 (9.19) 7.10 8.05 105406 583986
ICL/office1 965 5.36 6.42 (7.71) 5.88 6.78 103574 577011
ICL/office2 880 7.09 8.09 (9.39) 7.70 8.54 115885 619629
TUM/household 2486 10.94 12.21 (12.90) 9.61 10.83 64198 327729
Zhou/copyroom 5490 3.71 4.85 (5.68) 3.95 4.94 85699 446775
Zhou/lounge 3000 4.03 5.05 (5.85) 4.08 5.05 62144 323562
Zhou/burghers 11230 3.67 4.67 (5.48) 3.76 4.72 99976 532152

TABLE I: Average running time and total vertex consumption comparison of our method and baseline, at the resolution

of 3cm. In implementation, our method requires an additional compressing operation before copying data to the rendering

pipeline, while this step is ignored in the baseline due to our simplified implementation. Therefore running time (including

all stages in §V and rendering) of our method is displayed both without and with compressing stage, the latter in brackets.

There are several limitations in our pipeline apart from

the memory and runtime issues discussed in §VI. First, we

require precomputed accurate camera poses. When using

online estimated pose from e.g. [18], inevitable drifts would

cause the offset of TSDF value, leading to the shift of 3D

models, reducing reconstruction quality. We also rely on the

smoothing power of TSDF to eliminate noise from sensors,

which is likely to filter out sharp details in scenes and might

fail on very sparse depth data.

In the future, we plan to optimize the data structure and its

manipulations. More sophisticated spatial hashing techniques

might be used as proposed in [15]. We intend to open source

the code as an useful tool for online reconstruction and

mesh-based deformation and segmentation. In the research

viewpoint, we are improving the data fusion stage consider-

ing the uncertainty from sensors and working on integrating

localization module, utilizing the online generated mesh. A

complete SLAM system would be our ultimate goal.
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