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Abstract— We propose a fast and accurate 3D reconstruction
system that takes a sequence of RGB-D frames and produces
a globally consistent camera trajectory and a dense 3D ge-
ometry. We redesign core modules of a state-of-the-art offline
reconstruction pipeline to maximally exploit the power of GPU.
We introduce GPU accelerated core modules that include RGB-
D odometry, geometric feature extraction and matching, point
cloud registration, volumetric integration, and mesh extraction.
Therefore, while being able to reproduce the results of the high-
fidelity offline reconstruction system, our system runs more
than 10 times faster on average. Nearly 10Hz can be achieved
in medium size indoor scenes, making our offline system even
comparable to online Simultaneous Localization and Mapping
(SLAM) systems in terms of the speed. Experimental results
show that our system produces more accurate results than
several state-of-the-art online systems. The system is open
source at https://github.com/theNded/Open3D.

I. INTRODUCTION

Dense 3D reconstruction of scenes is a fundamental com-
ponent in localization and navigation tasks for intelligent
systems such as robots, drones, and surveillance systems.
Accurate 3D models of real-world scenes is a key element for
mixed and virtual reality applications, because it is directly
related to realistic content creation or telepresence. In recent
years, research in scene reconstruction using RGB-D frames
has flourished with the presence of affordable, high-fidelity
consumer-level RGB-D sensors, and a number of off-the-
shelf reconstruction systems have been introduced so far.

Reconstruction systems can be generally classified into
online and offline systems. Systems including VoxelHash-
ing [1], InfiniTAM [2], and ElasticFusion [3] are based on
dense SLAM algorithms. These algorithms suffer from pose
drift, which usually causes corrupted models in large scenes.
BundleFusion [4], as an online system, is more similar to
offline structure-from-motion systems. It keeps track of all
the RGB-D keyframes, hence is computationally expensive
and requires two high-end graphics cards to run. Offline
systems such as Open3D [5] and Robust Reconstruction
Pipeline [6], on the other hand, include hierarchical global
constraints such that the camera poses are globally consistent
and accurate even in large scenes. However, the expected
running times of such systems span from several hours to
days.

In this paper, we present an accelerated offline RGB-
D reconstruction system. The basic algorithm is based on
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Fig. 1. Reconstructed large indoor scenes, boardroom and apartment. The
largest scene apartment (> 30K RGB-D frames) is reconstructed by our
system within 1.5 hours, 6Hz on average. These scenes typically require
more than 10 hours to run on the offline system [5], and will fail on online
systems [3], [2]

offline systems such as Open3D [5], [6]. On top of this, the
major contributions in this work include:

• GPU acceleration of core modules in an offline recon-
struction system such as RGB-D odometry, Iterative
Closest Point (ICP), global registration, volumetric in-
tegration, and Marching Cubes.

• Designing new GPU data containers to boost basic
operations.

• 10x faster on average than baseline offline systems,
comparable to online systems in terms of speed.

• While being fast as an offline system, the reconstruction
accuracy is maintained on most datasets compared to the
state-of-the-art offline system [6].

https://github.com/theNded/Open3D
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Fig. 2. System overview. Left shows workflows of the 3 major stages, displayed in red (make submaps), blue (register submaps and refine registration),
and green (integrate scene) lines respectively. Right shows local and global reconstruction results, along with the pose graph of submaps. Best viewed in
color.

II. RELATED WORK

State-of-the-art online dense 3D reconstruction sys-
tems [3], [1], [2], [4] track the pose of the current frame
using visual odometry (VO), fuse data into the dense map,
and search for loop closures to reduce drift. While these
methods are fast enough to track input sequences, inevitable
drift can cause incorrect dense maps.

ElasticFusion [3] proposes to correct drift in a surfel-
based [7] map by introducing graph deformation. However,
the deformation is sensitive to user parameters and may
easily fail on various benchmarks. In addition, as surfels
accumulate quickly, the system may not scale to larger
scenes. InfiniTAM [2] and VoxelHashing [1] apply frame-to-
model tracking [8] to overcome the drift issue. RGB-D data
is fused into a Truncated Signed Distance Field (TSDF) [9]
with estimated poses, and the system extracts the model from
the TSDF for tracking. However, it may break down when
incorrect camera poses corrupt the dense map, even only
locally. InfiniTAM [2] introduces a relocalizer to recover the
system from tracking failures, but there is no strategy to
handle the corruptions in the TSDF map.

BundleFusion [4] performs exhaustive feature-based bun-
dle adjustment on the keyframes in the entire sequence to
correct camera poses, and uses brute-force re-integration [10]
to correct the TSDF map. For this reason, the system requires
two high-end graphics cards1 to ensure real-time, which
is beyond consumer level. Moreover, it keeps track of all
the keyframes and performs global optimization frequently,
hence it is only applicable to scenes with ≤ 25000 RGB-
D frames. It suggests that the computational cost may be
reduced by splitting large scenes and processing hierarchical
optimization.

On the other hand, offline reconstruction systems [6], [5]
address the drift issues in the online system by adopting
a hierarchical framework, as mentioned in [4]. The system
splits input sequences of varying lengths into subsets and
generates submaps using methods similar to online SLAM
systems. Afterwards, these submaps are registered pairwise

1An NVIDIA TITAN X and a TITAN black card were used for the real-
time demonstration.

to form a pose graph [11], which is optimized to provide
accurate poses for submaps. Finally, all RGB-D frames with
accurate poses are integrated into a global TSDF volume
to extract a complete 3D model. This approach can easily
modularize the overall procedure into small tasks such as
VO, dense mapping, and surface registration. Each decou-
pled component can benefit from available state-of-the-art
algorithms.

The offline systems use direct RGB-D odometry to esti-
mate the pose between subsequent frames. They can fully
utilize available depth and color information by directly
minimizing joint photometric and geometric error [12], [13],
[14], as well as overcome challenging textureless scenes
where feature-based method [15] may fail. Assuming that
pose drift is small over the course of each submap, the
systems fuse raw RGB-D data into a TSDF volume [8], [1]
and extract the mesh or point cloud as a submap.

At the level of submaps, point cloud registration is re-
quired to estimate relative poses between corresponding point
sets. With proper initialization, classical ICP [16] iteratively
computes data association and registration. The state-of-the-
art Colored ICP [14] achieves high accuracy between dense
colored point clouds. In cases where the pose initialization
is not reliable, globally optimal methods are preferred. [17]
searches the SE(3) space with bound-and-branch strategy
for potential initializations and then performs ICP. A faster
yet accurate algorithm Fast Global Registration (FGR) [18]
relies on Fast Point Feature Histograms (FPFH) [19] to
generate possible matches, and filters incorrect matches with
fast and robust line processes [20] defined in [18].

The obvious limitation of aforementioned offline systems
is that they take a very long time to reconstruct large scale
scenes. In this paper, we propose a GPU-accelerated offline
system to reach the level of online system performance while
not sacrificing accuracy.

III. RECONSTRUCTION SYSTEM

The basic principle of the proposed system is similar to
state-of-the-art offline reconstruction systems [5], [6]. The
overall procedure of the system consists of four major stages,
as shown in Fig. 2:



1) Make submaps. Frame-to-frame camera pose is esti-
mated for evenly divided subsets of the input sequence.
Afterwards, TSDF volume integration is performed for
each subset of the sequence, and a submap is extracted
in the form of a triangle mesh.

2) Register submaps. Pairwise submap registration is ap-
plied. The submap pairs that are temporally adjacent
are registered using Colored ICP [14] with reliable ini-
tial relative poses from RGB-D odometry. Temporally
distant submaps are registered using geometric feature-
based FGR [18] to detect loop closures. A pose graph
is constructed and optimized to determine the poses of
submaps in the global coordinate system.

3) Refine registrations. The relative poses between each
registered submap pair, including both the adjacent
and the distant submap pairs, are further refined using
multi-scale Colored ICP. A subsequent pose graph
optimization determines the final global poses for every
submap.

4) Integrate scene. Given the optimized poses of the
submaps and the poses of every frame, TSDF integra-
tion fuses the entire RGB-D sequence, and produces
the final 3D reconstruction.

A. Basic Data Containers for GPU

As the basic infrastructure, we designed several GPU data
structures for general usage in our system.
• 1D arrays. We implement atomic push back operation

to support multi-thread writing, mimicking a vector on
CPU.

• 2D arrays. They are stored in row major order. In a
typical parallel execution on a large 2D array, each
thread is designed to iterate over one column. Since
the threads are approximately accessing the same row
simultaneously, they are more likely to share the cache
that loads the same section of global memory, which
increases accessing efficiency.

• Linked list and hash table. A generic templated (key,
value, and hashing function) hash table is implemented
for GPU. Each hashed key corresponds to a fixed size
bucket array plus a dynamic size bucket linked list to
address conflicts. The hash table is essential for spatial
hashing used in 3D volume storage.

All the data structures support memory transfer between
GPU and CPU. Since global memory allocation is expensive
on GPU, we pre-allocate enough memory, and rely on a
dynamic memory manager to manually allocate and free
memory on GPU on demand. Reference counting is imple-
mented for efficient GPU memory sharing.

B. RGB-D Odometry

In RGB-D odometry, we seek to optimize an error function
of relative pose between two consecutive RGB-D frames
〈Fs, ξs〉 and 〈Ft, ξt〉.2 The error function is constructed as

2 We define the terms as follows. 〈F , ξ〉 denotes an RGB-D frame. Here,
F = 〈I,D〉 consists of color and depth images, and ξ ∈ SE(3) represents
the 6-DOF pose vector in the local submap’s coordinate system.

in [14], including both the photometric error rI and the
difference of depth rD:

E(ξts) =
∑
p

(1− σ) r2I (ξts,p) + σ r2D(ξts,p), (1)

rI = Is[p]− It[W(ξts,p,Ds[p])], (2)
rD = T (ξts,p, Ds[p]).z −Dt[W(ξts,p,Ds[p])], (3)

where ξts ∈ SE(3) is the relative pose from Fs to Ft, p ∈ R2

is the pixel in the RGB-D image Fs, and σ ∈ [0, 1] is a hyper
parameter to balance the appearance and geometry terms. We
use T (ξ,p, d) andW(ξ,p, d) to denote rigid transformation
and warping (transformation + projection) of a 3D point
with its pixel coordinate p and depth value d respectively.
For simplicity, the intrinsic matrix is not displayed in these
functions.

To minimize the non-linear error function, Gauss-Newton
optimization is applied. By computing the first-order lin-
earization, we have

rI(ξts + ∆ξ,p) ≈ rI(ξts) + JI(ξts,p)∆ξ, (4)
rD(ξts + ∆ξ,p) ≈ rD(ξts) + JD(ξts,p)∆ξ, (5)

where JI and JD are Jacobian matrices for each term per
pixel. Finally, the problem reduces to solving ∆ξ in the least
squares system and updating ξts iteratively:∑

p

A(p)∆ξ = −
∑
p

b(p), (6)

ξts = ∆ξ ⊕ ξts, (7)

where the system is built up with

A(p) = (1− σ) JT
I JI(ξts,p) + σ JT

DJD(ξts,p), (8)

b(p) = (1− σ) JT
I rI(ξts,p) + σ JT

DrD(ξts,p). (9)

To ensure faster convergence, we implement coarse-to-fine
RGB-D odometry using a image pyramid.

It is straightforward to parallelize building the Jacobian
matrix, because each pixel contributes to the Jacobian in-
dependently. However, proper handling of thread conflicts
in the summation operation is critical here, because the
number of GPU threads is often larger than a few thou-
sand, and thread conflicts degrade performance. While an
Atomic-Add operation is supported on most GPUs to avoid
conflicts, the more advanced technique Reduction [21]
can accelerate the process further by fully utilizing shared
memory instead of global memory. There are two variations
of Reduction, the original one [21] and Warp Shuffle
used in [3]. Based on our experiments, the original version
runs two times faster than built-in atomic-add, and outper-
forms warp shuffle.

As A(p) is a symmetric matrix, only the upper-right
21 elements are summed, while the other elements are
duplicated on CPU. Plus 6 elements in b(p), we need to sum
27 elements separately. To accelerate, we allocate 3 arrays of
shared memory and sum 3 elements in the linear system at
one time. With reasonable shared memory consumption, the
cost of frequent thread synchronization is reduced: reduction



takes around 2∼3 ms to sum elements in the linear system
for a 640×480 image. This general reduction module is also
used in Sec. III-E, where similar linear systems are defined.

C. Integration

With the known pose ξ of each frame F , we can use TSDF
integration to fuse raw RGB-D data into the volumetric
scalar field. To improve the storage efficiency, we use spatial
hashing as described in [2], [1], with the modified hash
table structure described in Sec. III-A. The space is coarsely
divided into voxel blocks for spatial hashing; each block
contains an array of 8 × 8 × 8 voxels for fast and direct
parallel memory access by GPU threads.

The integration consists of three passes. In the first pass,
a point cloud is generated from frame F and transformed
using its pose ξ. The blocks that can cover the generated
points will be created if they do not exist yet. In the second
pass, all generated blocks in the F’s viewing frustum will
be collected into a buffer. Finally, parallel integration will
be performed on collected blocks in the buffer. Each voxel
in the blocks will be projected onto F to find the projective
closest pixel. After that, the voxels update their stored TSDF
value using a weighted average:

d = φ(D[W(ξ,x)]− x.z), (10)

TSDF[x] =
TSDF[x] + d

Weight[x] + 1
, (11)

Weight[x] = Weight[x] + 1, (12)

where φ is the truncation function in [8], x ∈ R3 is the
voxel coordinate, and W(ξ,x) projects x to the frame after
transforming x with ξ. Weighted average generally also
applies to colors.

D. Mesh Extraction

After the TSDF has been generated, Marching Cubes
(MC) [22] is applied to extract surfaces from TSDF volumes.
We improve the mesh extraction framework in [23] both in
terms of memory and speed.

As pointed out in [23], the vertex on the shared edge be-
tween two voxels can be computed only once. By setting up
a one-to-one correspondence between edges and voxels, we
can compute every unique vertex once. Directly maintaining
the edge-vertex correspondences in voxels along with the
TSDF creates a large overhead in memory. In the improved
version, we detach the structure, so that it can be allocated
and attached only to the active parts of the TSDF volume
that require meshing.

One of the most computationally expensive operations in
MC is normal estimation from the TSDF. Given a vertex
xv = (xv, yv, zv), the normal is computed by normalized
gradient ∇TSDF(xv)/||∇TSDF(xv)||, where

∇TSDF(xv)

=

TSDF(xv + 1, yv, zv)− TSDF(xv − 1, yv, zv)
TSDF(xv, yv + 1, zv)− TSDF(xv, yv − 1, zv)
TSDF(xv, yv, zv + 1)− TSDF(xv, yv, zv − 1)

 .
(13)

Since the 6 query points are not grid points, 8 spatial queries
are required to get a tri-linear interpolated TSDF value
per query point. 48 spatial queries and 48 interpolations
for one single point is expensive. We found that the final
computed normal is identical to a simple interpolation of
normals at the two adjacent grid points, while the normal
computation at a grid point only requires 6 queries, as shown
in Fig. 3. Therefore, we need only 12 spatial queries and 1
interpolation.

α
1-α

8 queries

6 queries

Fig. 3. Illustration of normal extraction. Red lines show the redundant
queries (tri-linear interpolation for non-grid points) to extract normal. Blue
lines show the optimal interpolation of normals at adjacent grid points. α is
the interpolation ratio of normals, which can be directly computed in MC.

To further speed up MC in spatial hashed voxel blocks,
we specifically implement MC for

1) Voxels inside a voxel block. Modified MC in [23] is
directly performed on such voxels.

2) Voxels at the boundary of a voxel block, where fre-
quent hash table queries are required. Despite the fact
that hash tables are supposed to be O(1) look up, the
overhead is considerable. To speed up, for each block,
we first cache pointers of all 26 neighbor blocks. Then
each voxel can access neighbor voxels from the cached
block instead of looking them up in the hash table.

E. Registration

Given extracted surfaces as submaps S, we perform a
multiway registration defined in [6] to get their poses ζ.

1) Colored ICP: Point cloud pairs with good initial pose
guesses are registered using Colored ICP [14]. Typically, we
can obtain reasonable initialization between two consecutive
submaps by aligning the poses of the last RGB-D frame in
the first submap and the first RGB-D frame in the second
submap.

Colored ICP builds up a linear system similar to Eq. 2.
While RGB-D images are dense in 2D, point clouds are
sparse in 3D. Therefore, for point cloud registration, projec-
tive data association has to be replaced by nearest neigh-
bor search. Since there are no satisfying alternatives on
GPU, we use Fast Library for Approximate Nearest Neigh-
bors (FLANN) [24] on CPU to find 3D nearest neighbors,
as a legacy of [5]. In addition, the gradient operation that is
natural on 2D images is not well-defined on point clouds,
causing problems in computing Jacobians. It is easy to
replace gradient of the depth image with each point’s normal;
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Fig. 4. Average runtime comparison of our system (GPU) and Open3D [5] (CPU).
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Fig. 5. Total system runtime on datasets. ∼ 8Hz on average is achieved on most datasets.

with the correspondences from FLANN, we can compute
approximated color gradient per point, as defined in [14]: ∑

p′∈N (p)

A(p′)TA(p′) + n(p)n(p)T

 d(p)

=
∑

p′∈N (p)

A(p′)T b(p′). (14)

Here p ∈ R3 denotes the point we are processing, n(p) is
its normal, p′ ∈ N (p) represents its neighbors, and d(p) is
the target color gradient at p. The linear system depends on
the projective distances and color differences between p and
its neighbors:

A(p′) = p′ − n(p)T (p′ − p) n(p), (15)
b(p′) = C(p′)− C(p), (16)

where C(p) is the intensity of a point. To solve these small
linear systems in parallel, we implement a complete module
for LDL decomposition and forward substitution on GPU.

After preprocessing, our implementation iterates between
finding data correspondences on CPU and building the linear
system on GPU until convergence. Apart from Colored
ICP, classical point-to-point and point-to-plane ICP are also
supported within the same architecture.

2) Fast Global Registration: We compute pairwise reg-
istrations between non-adjacent submaps to detect potential
loop closures. As no initialization is provided, we have to
rely on 3D features to get correspondences. FPFH [19] is
used in our case. FPFH only relies on local neighbors,
therefore feature extraction is possible to run in parallel,
provided nearest neighbors are found by FLANN.

As a high dimensional (33 dim) feature, FPFH is less
efficient to match using FLANN. We turn to brute-force
parallel NN matching by simplifying KNN-CUDA [25] to
the 1-NN case. Brute force NN consists of 2 passes. In the
first pass, a dense distance matrix is calculated in parallel
after the matrix is divided into small submatrices. Here,
the cache friendly column-wise iterations we designed in
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Fig. 6. Marching Cubes runtime. Note in this experiment, ground truth
trajectories are used to ensure reasonable viewing frustums.

Sec. III-A help to accelerate the step by a factor of 2.
In the second pass, each query point will search for their
nearest neighbor by Reduction with the min operator,
which resembles the Reduction with add we used. The
drawback of brute-force matching is the memory cost. The
dense distance matrix will consume all the GPU memory
when the sizes of point clouds are large (> 20K). Under
such circumstances, downsampling is required.

With known matches, we reuse our framework to build
a linear system for the FGR algorithm [18]. As there are
point-wise line processes involved, the error function is much
different from Eq. 2. We refer readers to the original paper
for more details. Before applying Gauss-Newton, feature
matching tests are performed in parallel, where each thread
handles a random test set. All the data stay on GPU after
feature extraction, including parallel random number gener-
ation. No expensive CPU operation is required after FLANN
has finished its job, hence FGR can run very fast and stable.

After registration, estimated poses ζ are inserted in a pose
graph as nodes, with edges between adjacent submaps and
potential loop closures. The information matrices on the
edges are computed similar to the building process of linear
systems with minor changes in residuals and Jacobians. We
then perform robust multiway registration [6] to eliminate
false loop closures and obtain optimized poses.

IV. EXPERIMENTAL RESULTS

The proposed system can reproduce the results of the
state-of-the-art offline reconstruction system implemented in
Open3D [6], [5] with significantly reduced time budget. In
this section, we compare runtime with the baseline offline
reconstruction system Open3D [5], and show qualitative and
quantitative results with state-of-the-art online reconstruc-
tion systems. The tested datasets include the TUM RGB-D
dataset [26], the Stanford and Redwood simulated dataset [6],
and the large Indoor LIDAR-RGBD Scan dataset [14]. The
voxel size is set to 6mm in real-world scenes and 8mm in
Redwood simulated scenes.

The GPU part is implemented in CUDA, where CPU
utility functions are built upon Open3D [5]. The following
experiments were run on a laptop with an Intel i7-6700 CPU

Fig. 7. Pose graph of submaps on TUM household and desk datasets. Valid
loop closures are detected between submaps.

and a NVIDIA 1070 graphics card with 8G GPU memory.

A. Runtime Results

In Fig. 4, we first show the acceleration of the components
in our system.
• Multi-scale RGB-D Odometry runs with {20, 10, 5}

iterations from coarse to fine scale. It is accelerated to
around ∼16ms per frame, around 40 times faster than
the baseline. As it already achieves real-time, RGB-D
SLAM systems may include this module.

• TSDF integration is accelerated to ∼10ms per frame on
a volume with high resolution, approximately 50∼120
times faster. This component can also serve as a part of
a real-time dense SLAM / mapping system.

• Multi-scale Colored ICP runs with {50, 30, 14} iter-
ations from coarse to fine scale. It is accelerated only
with a factor of 1.5 to 2. The major reason is that we still
rely on FLANN for data correspondences, which takes
a large amount of time. Note the runtime excludes the
slow point cloud downsampling, which takes place in
both CPU and GPU methods.

• FGR is accelerated to around 10Hz, 4∼5 times faster
than CPU version. GPU based feature extraction and
matching significantly reduces the runtime. These mod-
ules may also be separately used in other tasks such as
naive 3D object recognition and matching.

We also separately demonstrate the performance of parallel
MC in Fig. 6. As it runs very fast for visualizing surfaces
in the viewing frustum, it can serve as a visualizer for dense
SLAM systems. A screenshot is shown in Fig. 11.

Fig. 5 provides a general runtime overview of the system
on real-world datasets, where around 8Hz is achieved on
most datasets. Note in the make submaps stage we only
account for pure odometry. Optional feature-based loop
closure detection may increase the local trajectory accuracy,
with the cost of 2∼3 times runtime. A major time consuming
operation in refine registration is point cloud downsampling
on CPU, which can be accelerated on GPU.

B. Reconstruction Results

We now show the qualitative reconstruction results on the
TUM dataset in Fig. 7. The pose graph of the submaps is
also illustrated, from which we can observe correct loop
closures are found with pairwise FGR. Additional experi-
mental results on lounge, copyroom, and stonewall can be
viewed in Fig. 9. We can easily observe that the details



Fig. 8. Distance heatmap from reconstructed model to ground truth on livingroom1, generated from CloudCompare. From left to right, ElasticFusion,
InfiniTAM (hybrid color and depth tracker fails, shift occurs in ICP tracker), ours.

are well preserved in the scenes without drift or apparent
artifacts. Fig. 1 shows reconstruction results on more chal-
lenging scenes boardroom and apartment with more than
20K frames. Our system can still successfully close the
loops and output accurate models, while other online SLAM
systems fail.

Due to difficulties in configuration, we do not run Bundle-
Fusion [4] on our machine. Instead, we compare against their
results on the BundleFusion dataset qualitatively. In Fig. 10
we can see that while producing similar results, our pipeline
can better align surfaces.

As for quantitative results, we show the heatmap of cloud-
to-cloud distances between estimated models and ground
truth on the livingroom from the Redwood simulated dataset.
The ground truth model is adapted from [27]. The heatmaps
are computed by CloudCompare software. In Fig. 8, we can
see there are only minor discrepancies between our output
model and the ground truth, while a shift is observable in
the online systems. More results on the Redwood simulated
and Indoor LIDAR-RGBD datasets are listed in Table I. Our
system has consistently higher reconstruction accuracy, and
works on large scenes where other online systems fail to
recover the whole scene.

C. Additional Result using Mobile Device

Our system not only works on laptops and PCs, but also
on mobile devices supporting CUDA. Given real-world data
collected from an Intel RealSense, our system is able to
reconstruct the road in minutes on a NVIDIA Jetson TX2,
see Fig. 12.

V. CONCLUSIONS AND FUTURE WORK

We implemented a GPU-accelerated dense RGB-D offline
reconstruction system which runs fast on real-world datasets
while maintaining state-of-the-art reconstruction results. The
system is open source, and the major components can be used
separately in various applications, such as real-time SLAM
and object recognition.

In the future, we intend to introduce advanced relocalizers
to replace pairwise submap matching for higher speed and
robustness in loop closure detection. Equipped with an
efficient relocalizer, we may bring up an online system that
accepts streaming input frames. Another research direction is
a fast 3D nearest neighbor search. Advance techniques such
as parallel cuckoo hashing in [28] may be considered.
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